Inorg. Chem. **2005**, 44, 477−479

NaSn2: A Novel Binary Zintl Phase with 2D Polyanions of Realgar-Type Units $[Sn_8]^{4-}$

Franck Dubois, Martin Schreyer, and Thomas F. Fässler*

*Department Chemie, Technische Uni*V*ersita¨t Mu¨nchen, Lichtenbergstrasse 4, D-85747 Garching, Germany*

Received September 2, 2004

NaSn₂, obtained from the reaction of stoichiometric amounts of the elements, crystallizes in a new structure type, in which twodimensional polyanions are separated by Na⁺ cations. The tin framework is made up of Realgar-type $Sn₈$ units. The density of states obtained from the TB-LMTO-ASA calculations with the implementation of the electron localization function (ELF) reveals that $NaSn₂$ has all characteristics of a Zintl phase. Thus, the title compound can be written as $(Na^{+})_{4} \frac{2}{\infty} [Sn_{8}^{4-}]$. NaSn₂ dissolves readily in ethylenediamine, under the formation of a reddish brown solution indicative of the presence of $[Sn_9]^{4-}$ anions.

The phase $NaSn₂$ detected by thermal analysis in 1928¹ played a key role in the discovery of the first Zintl anion $[Sn_9]^{4-2}$ isolated from solution, which was structurally characterized by Kummer et al.3 Therefore, in the Na/Sn phase diagram the composition $NaSn₂$ was often regarded as $\text{NaSn}_{2.25}$ (Na_4Sn_9)² which applies for the other alkali metal stannides $ASn_{2.25}$ (A = K, Rb, and Cs).⁴ However, with Na₇Sn₁₂ (∼NaSn_{1.7})⁵ and Na₅Sn₁₃ (∼NaSn_{2.6}),⁶ two compounds with a Na/Sn ratio close to 1:2 have been isolated.

Depending on the type of the alkali metal and the atomic ratio A/Sn, the dimensionality of the tin network can vary from 0 to 3D, and the Sn-Sn bonding reaches from localized $two-electron-two-center (2e-2c) bonds to purely metallic$ bonding. In the Na/Sn system, the zero-dimensional tin framework is observed for the compounds $Na₄Sn⁷$ and $Na₁₅Sn₄⁸ containing isolated Sn atoms, Na₉Sn₄⁸ with dimeric$ Sn₂ units, and β -NaSn⁹ with tetrahedral [Sn₄]⁴⁻ anions. A two-dimensional tin network is found for the compound

- (1) Hume-Rothery, W. *J. Chem. Soc.* **1928**, *131*, 947.
- (2) Zintl, E.; Gourbeau, J.; Dullenkoft, W. *Z. Phys. Chem.* **1931**, *154*, 1.
- (3) Kummer, D.; Diehl, L. *Angew. Chem.* **1970**, *82*, 881.
- (4) von Schnering, H. G.; Baitinger, M.; Bolle, U.; Carillo-Cabrera, W.; Curda, J.; Grin, Y.; Heinemann, F.; Llanos, J.; Peters, K.; Schmeding, A.; Somer, M. *Z. Anorg. Allg. Chem.* **1997**, *623*, 1037.
- (5) Fa¨ssler, T. F.; Hoffmann, S. *Inorg. Chem.* **2003**, *42*, 5474.
- (6) Vaughey, J. T.; Corbett, J. D. *Inorg. Chem.* **1997**, *36*, 4316
- (7) Gue´rin, F.; Richeson, D. *J. Chem. Soc., Chem. Commun.* **1994**, 2213.
- (8) Mu¨ller, W.; Volk, K. *Z. Naturforsch.* **1978**, *33b*, 275.
- (9) Mu¨ller, W.; Volk, K. *Z. Naturforsch.* **1977**, *32b*, 709.

10.1021/ic048770p CCC: \$30.25 © 2005 American Chemical Society **Inorganic Chemistry,** Vol. 44, No. 3, 2005 **477** Published on Web 12/29/2004

 $Na₇Sn₁₂$ as well as for the title compound NaSn₂, both of which contain two-dimensional polyanions ${}_{\infty}^{2}[Sn_{12}^{7-}]$ and $^{2}_{\infty}$ [Sn₈^{4–}], respectively, which are separated by layers of sodium cations. Finally, a three-dimensional tin network is found from the $Na₅Sn₁₃$ compound. According to the Zintl concept, the valence electrons in the Na/Sn system are assigned to the tin atoms and are localized either in twoelectron-two-center $(2e-2c)$ bonds between two tin atoms or as lone pairs at the tin atoms. The 8-N rule of the concept of Zintl, Klemm, and Busmann^{10,11} allows a prediction of the existence of Zintl phases. One of the most famous Zintl anions is the tetrahedral anion $[Sn₄]₊⁴⁻$ observed in β -NaSn, $A_{52}Sn_{82}$ (A = K, Cs),¹² and $A_{12}Sn_{17}$ (K, Rb, Cs),¹³ where it is accompanied in the latter by nido-type $[Sn_9]^{4-}$ clusters. Solely nine-atom clusters are observed in A_4Sn_9 phases for $A = K$, Rb, Cs.^{4,14}

 $[Sn₉]⁴⁻$ anions can also be stabilized in solution by solvents such as ethylenediamine or liquid ammonia and by complexation of the $Na⁺$ counterions with 2,2,2-crypt(4, 7,13,16,21,24-hexaoxa-1,10-diazobicyclo[8,8,8]hexacosane).^{15,16} The formation of the homopolyatomic anion Sn_9^{4-} which is red-brown in solution does not necessarily require an exact and pure nominal composition of the starting material. For example, in solutions of alloys such as LiSn, LiSn₂, NaSn₄, Na₄Sn₉, NaSn₂ and NaSn in en or NH₃, the $[Sn_9]^{4-}$ anion can be detected by ¹¹⁹Sn NMR spectroscopy,¹⁷ or in the synthesis of $Na_4Sn_9(en)_{6-8}$ by Kummer et al.,³ a Na/Sn ratio between 2:4 and 2:5 was used for the preparation of the alloy. Although $[Sn_9]^{4-}$ anion exists in solution for the complete series of the alkali metals (Li to Cs),¹⁷ in contrast no solid phases A₄Sn₉ have been obtained so far

- (10) Klemm, W.; Busmann, E. *Z. Anorg. Allg. Chem.* **1963**, *319*, 297.
- (11) Schafer, H.; Eisenmann, B.; Müller, W. *Angew. Chem., Int. Ed. Engl.* **1973**, *121*, 694.
- (12) Hoch, C.; Wendorff, M.; Röhr, C. Z. Anorg. Allg. Chem. 2003, 629, 2391.
- (13) Hoch, C.; Wendorff, M.; Röhr, C. *J. Alloys Compd.* 2003, 361, 206.
- (14) Hoch, C.; Wendorff, M.; Röhr, C. Acta Crystallogr. 2002, C58, 45.
- (15) Edwards, P. A.; Corbett, J. D. *Inorg. Chem.* **1977**, *16*, 903.
- (16) Corbett, J. D.; Edwards, P. A. *J. Am. Chem. Soc.* **1977**, *99*, 3313.
- (17) Wilson, W. L.; Rudolph, R. W.; Lohr, L. L.; Taylor, R. C.; Pyykkö, P. *Inorg. Chem.* **1986**, *25*, 1535.

 $*$ To whom correspondence should be addressed. E-mail: for $A = Li$ and Na. thomas.faessler@lrz.tum.de.

COMMUNICATION

Figure 1. The structure of $NaSn₂$ (90% probability level for the thermal ellipsoids). Solid lines: $Sn-Sn$ contacts between 2.833(1) and 2.975(2) Å.

The structure of $NaSn₂$ was determined by single-crystal X-ray diffraction. Shiny single crystals were obtained from the stoichiometric reaction of Na with Sn.¹⁸ They crystallize in a monoclinic unit cell, space group $C2/m$, with $Z = 16$.¹⁹ The X-ray powder diagram of the crude product shows the presence of two impurities, namely NaSn₅²⁰ and Sn. The structure of the novel compound $NaSn₂$ consists of twodimensional Sn-polyanions, which are stacked up along the *c* direction (Figure 1). The Na cations separate these sheets of two-dimensional polyanions. The tin framework is formed by five crystallographically independent Sn atoms, which form five-membered rings and are connected along the *b* direction, thereby forming empty channels. The channels are connected along *a* to form a two-dimensional net. As a consequence, the structure contains the same number of triand tetracoordinated (3b and 4b) tin atoms. Thus, the formula of the new Zintl phase NaSn₂ can be written as (Na^{+}) ₄[(3b)-

(20) Fa¨ssler, T. F.; Kronseder, C. *Angew. Chem.* **1998**, *110*, 1641.

Figure 2. The tin framework of the $\frac{2}{\infty}$ [Sn₈⁴⁻] polyanion with one layer of Na cations (cross), in (001) projection. Dark and white circles denote (3b)- Sn and (4b)-Sn atoms, respectively. The Sn₈ units are drawn with bold lines, and the connection between the Sn_8 units is drawn with lighter lines. A and B indicate the five- and six-membered rings, respectively. Below: an isolated Sn₈ unit, distances are given in ångstroms.

 Sn^{-}]₄[(4b)Sn⁰]₄. The bonding Sn-Sn distances in the poly-
anion vary between 2.833(1) and 2.975(2) λ the shortest anion vary between $2.833(1)$ and $2.975(2)$ Å; the shortest Na-Sn and Na-Na distances are $3.121(3)$ and $3.42(1)$ Å, respectively, and are in agreement with distances found in other binary systems. The $(3b)Sn-(4b)Sn-(3b)Sn$ angles within the Sn_8 unit are very close to the ideal tetrahedral angle with values of $108.09(2)^\circ$ and $107.76(2)^\circ$ for Sn(3)- $Sn(2)-Sn(5)$ and $Sn(3)-Sn(1)-Sn(4)$, respectively.

The polyanionic ${}_{\infty}^{2}[Sn_{8}^{4-}]$ tin framework arises from the connection of $[Sn_8]^{4-}$ units, which are linked in two directions by the tetracoordinated Sn atoms (Figure 2). Each $[Sn_8]^{4-}$ unit, formed by both tetra- and tri-coordinated Sn atoms, is connected to six others units by eight external bonds. Thus, the formation of two kinds of rings is observed in the *ab* plane: a five-membered ring A with an envelope and a six-membered ring B with an armchair conformation. Similar eight-atoms units are also found in the mineral Realgar, β -As₄S₄,²¹ and in Hittorf's phosphorus ∞[$-P_8-P_2-P_3-P_4$]
P₂-P₂-1²² with [P₂] units Indeed, the (4b) and (3b)Sn atoms P_9-P_2 — $]^{22}$ with $[P_8]$ units. Indeed, the (4b) and (3b)Sn atoms
take the positions of the S and the As atoms in $6-4sS$. In take the positions of the S and the As atoms in β -As₄S₄. In the compounds $Na₇Sn₁₂$ and $Na₅Sn₁₃$, the tin frameworks contain structurally related units of 9 tin atoms which show

(22) Thurn, H.; Krebs, H. *Acta Crystallogr.* **1969**, *B25*, 125.

⁽¹⁸⁾ Details of the synthesis follow: $NaSn₂$ was synthesized by reacting stoichiometric amounts of pure elements in a niobium container which was closed by arc-welding under argon and transferred to a quartz tube. The mixture was heated at 500 °C for 100 h and then slowly cooled to 275 °C at the rate of 3 °C/h. This temperature was maintained for 2 days and then slowly cooled (6 °C/h) to room temperature. Single crystals of NaSn2 had metallic luster.

⁽¹⁹⁾ Details of the structure determination follow: A shiny single crystal was sealed in a capillary. X-ray data were collected at 150 K on a Enraf-Nonius KappaCCD at the window of a rotating anode (Nonius, FR591) and graphite monochromated Mo K α radiation ($\lambda = 0.71073$) Å). The structure was solved by direct methods and refined by leastsquares with SHELX-97.^{19a} Crystal data include the following:
monoclinic, space group $C2/m$, $a = 13.3916(3)$ Å, $b = 6.88541(2)$ Å, monoclinic, space group $C2/m$, $a = 13.3916(3)$ Å, $b = 6.88541(2)$ Å, $c = 15.4889(4)$ Å, $\beta = 102.529(2)$ °, $V = 1387.83(6)$ Å³; $Z = 16$; μ
= 14.222 cm⁻¹; $\rho_{\text{cycle}} = 4.985$ s cm⁻³. The final refinement of all $= 14.222$ cm⁻¹; $\rho_{\text{calcd}} = 4.985$ g cm⁻³. The final refinement of all atoms with anisotropic displacement parameters converged to R_1/wR_2 $(I \ge 2\sigma I) = 0.036/0.086$ and R₁/wR₂ (all data) = 0.037/0.086 for 1721 reflections and 63 variables; $GOF = 1.20$. The presence of residual electron density (5 e/ \AA ³ at 1.48 Å from Na(2)) is probably due to some Na disorder. No superstructure was observed, but diffuse scattering contributions are present, indicating incommensurable behavior. (a) Sheldrick, G. M. *SHELX-97 Program for Crystal Structure Determination*; University of Göttingen: Göttingen, Germany, 1997.

⁽²¹⁾ Mullen, D. J. E.; Nowacki, W. *Z. Kristallogr.* **1972**, *136*, 48.

the same connectivity pattern as observed in $As_4S_5^{23}$ and in Hittorf's phosphorus.

So far, isolated $[Sn_8]^{12-}$ units which are isoelectronic with the Realgar-type structure have not been described in the literature. The compounds $A_4Li_2Sn_8$ (A = K, Rb)²⁴ which contain isolated cluster anions of 8 tin atoms, $[Sn_8]^{6-}$, form square prismatic arachno clusters.

The LMTO density of states plot²⁵ of NaSn₂ shows a small gap of only 0.2 eV around the Fermi level which is indicative of semiconducting behavior. Bond analysis using the electron localization function (ELF)²⁶ has recently been used successfully for bond analyses of other binary stannides, for example, semiconducting $\text{Na}_7\text{Sn}_{12}^5$ and $\text{K}_6\text{Sn}_{25}^2$ and metallic SrSn₄.²⁸ For NaSn₂, ELF shows strong covalent contributions for all nearest Sn-Sn contacts (see in Figure 3; localization regions $(0, \mathcal{Q}, \mathcal{Q}, \mathcal{Q}, \mathcal{Q})$, and (\mathcal{Q}) and the presence of lone pairs at the (3b)Sn atoms (lone pair regions \mathcal{F} , \mathcal{F} , and \mathcal{D}). The bond attractors (ELF maxima) are not always located on the bond vector, but are shifted, as can be seen by region \odot of the 2D diagram in Figure 3b. Due to additional repulsion, the shift is even more pronounced in an all-electron calculation (Figure 3d-f) as compared to the valence-electron calculation (Figure $3a-c$). Interestingly, the two bond regions $\circled{5}$ and $\circled{8}$ between the tricoordinated atoms $Sn(4)-Sn(5)$ and Sn(3)-Sn(3), respectively, are different. The larger area 5 corresponds to the shorter contact and most probably originates from different Na/Sn coordinations and therefore from a more efficient charge compensation of the 3-fold bonded $\text{Sn}(4)^{-}$ and $\text{Sn}(5)^{-}$ anions. For $\text{Sn}(3)$, there are only two short Na-Sn distances ($d \leq 3.23$ Å), whereas for Sn-(4)/Sn(5) there are three of them ($d \leq 3.13 \text{ Å}$ (2×) and 3.39 Å). All other Na-Sn contacts are longer than 3.5 Å. A 2D view through the $Sn(2)-Sn(3)$ bond vector in the *ac* plane shows that there are direct contacts between the lone pairs at the Sn(3) atoms without Na cations between them (Figure 3b,e).

It has been shown that the phase $NaSn₂$ observed for the first time in 1928 by thermal analysis does not correspond to Na₄Sn₉, although the phases AE_2 and A_2E_3 with $A = K$,

Figure 3. LMTO-ELF representation of NaSn₂. $(a-c)$ Valence ELF and $(d-f)$ all-electron calculations. (a) 3D plot with ELF = 0.75 of a Realgartype unit, (b) 2D plot through the Sn(1)-Sn(3) bond vector in the *ac* plane highlighting contour lines $ELF = 0.75$ and 0.80, (c) 2D plot in the plane of Sn(4) and Sn(5) atoms and in the *ac* plane with ELF = 0.75 and 0.80. (d) $3D$ ELF = 0.50, structure detail as in part a including Na atoms, green spheres at atom positions reflect core shells of Sn and Na atoms. For parts e and f, all-electron ELF plots as in parts b and c, respectively. The color of each pixel corresponds to a specific ELF value as indicated in the color bar at the bottom of part c.

Rb, Cs and $E = Si-Pb$ were identified as A₄M₉ and A₁₂M₁₇, respectively. The title compound represents a novel structure type containing two-dimensional Sn polyanions. Dissolution of this phase in ethylenediamine results in a reddish brown solution,²⁹ indicative of the presence of the polyanion $[Sn_9]^{4-}$. The formation of soluble Zintl anions originates rather from an oxidation of NaSn₂, $\frac{9}{4}$ Sn₈⁴⁻ \rightarrow 2[Sn₉]⁴⁻ + 1e⁻, than from
a phase which contains preformed clusters a phase which contains preformed clusters.

Acknowledgment. The authors would like to thank the European Union's RTN program (Eu-project Nr. HPRN-CT 202-00193) and are indebted to Dr. Gieck for the X-ray data collection and Dr. Schier for the help with the correction of the manuscript.

Supporting Information Available: Tables of data collection and refinement parameters, positional and anisotropic displacement parameters, distances, and angles, as well as a density-of-states plot. X-ray crystallographic files in CIF format. This material is available free of charge via Internet at http://pubs.acs.org.

⁽²³⁾ Whitfield, H. J. *J. Chem. Soc., Dalton Trans.* **1973**, 1740

⁽²⁴⁾ Bobev, S.; Sevov, S. C. *Angew. Chem., Int. Ed.* **2000**, *39*, 4108.

⁽²⁵⁾ Details of the electronic structure calculation follow: The electronic structure was calculated with the local density-functional approach and the linear muffin-tin orbital (LMTO) method in the atomic sphere approximation (ASA) using the tight-binding (TB) program TB-LMTO-ASA.25a The exchange correlation potential was parametrized according to Barth and Hedin.^{25b} The radii of the muffin-tin spheres and empty spheres were determined after Jepsen and Andersen.^{25c} (a) van Schilfgarde, M.; Paxton, T. A.; Jepsen, O.; Andersen, O. K.; Krier, G. In Programm TB-LMTO; Max-Planck-Institut für Festkörperfor*schung*; Stuttgart, Germany, 1994. (b) Barth, U.; Hedin, L. *J. Phys. Chem.* **1972**, *5*, 1629. (c) Jepsen, O.; Andersen, O. K. *Z. Phys. B* **1995**, *97*, 35.

^{(26) (}a) Savin, A.; Becke, A. D.; Flad, J.; Nesper, R.; Prüss, H.; von Schnering, H. G. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 409. (b) Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem., Int. *Ed. Engl.* **¹⁹⁹⁷**, *³⁶*, 1809; Fa¨ssler, T. F. *Chem. Soc. Re*V*.* **²⁰⁰³**, *³²*, 80.

⁽²⁷⁾ Fa¨ssler, T. F. *Z. Anorg. Allg. Chem.* **1998**, *624*, 569

⁽²⁸⁾ Hoffmann, S.; Fa¨ssler, T. F. *Inorg. Chem.* **2003**, *42*, 8748

IC048770P

⁽²⁹⁾ A 100 mg portion of NaSn₂ (NaSn₂, NaSn₅, and Sn metal are identified by X-ray powder diffraction) dissolves in en, and the solution turns to red-brown color, with some particles not soluble.